首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   43836篇
  免费   4130篇
  国内免费   32篇
  2021年   572篇
  2020年   336篇
  2019年   411篇
  2018年   554篇
  2017年   512篇
  2016年   925篇
  2015年   1594篇
  2014年   1734篇
  2013年   2203篇
  2012年   2759篇
  2011年   2836篇
  2010年   1856篇
  2009年   1792篇
  2008年   2605篇
  2007年   2622篇
  2006年   2553篇
  2005年   2519篇
  2004年   2455篇
  2003年   2420篇
  2002年   2368篇
  2001年   498篇
  2000年   389篇
  1999年   548篇
  1998年   625篇
  1997年   430篇
  1996年   387篇
  1995年   420篇
  1994年   401篇
  1993年   409篇
  1992年   341篇
  1991年   311篇
  1990年   329篇
  1989年   244篇
  1988年   296篇
  1987年   273篇
  1986年   268篇
  1985年   329篇
  1984年   373篇
  1983年   335篇
  1982年   434篇
  1981年   432篇
  1980年   413篇
  1979年   266篇
  1978年   298篇
  1977年   263篇
  1976年   273篇
  1975年   209篇
  1974年   279篇
  1973年   251篇
  1972年   158篇
排序方式: 共有10000条查询结果,搜索用时 16 毫秒
51.

Background  

Twelve populations of E. coli were serially propagated for 20,000 generations in a glucose-supplemented minimal medium in order to study the dynamics of evolution. We sought to find and characterize one of the beneficial mutations responsible for the adaptation and other phenotypic changes, including increased cell size, in one of these populations.  相似文献   
52.
53.
54.
Microglossia is a congenital birth defect in humans and adversely impacts quality of life. In vertebrates, tongue muscle derives from the cranial mesoderm, whereas tendons and connective tissues in the craniofacial region originate from cranial neural crest (CNC) cells. Loss of transforming growth factor β (TGFβ) type II receptor in CNC cells in mice (Tgfbr2fl/fl;Wnt1-Cre) causes microglossia due to a failure of cell-cell communication between cranial mesoderm and CNC cells during tongue development. However, it is still unclear how TGFβ signaling in CNC cells regulates the fate of mesoderm-derived myoblasts during tongue development. Here we show that activation of the cytoplasmic and nuclear tyrosine kinase 1 (ABL1) cascade in Tgfbr2fl/fl;Wnt1-Cre mice results in a failure of CNC-derived cell differentiation followed by a disruption of TGFβ-mediated induction of growth factors and reduction of myogenic cell proliferation and differentiation activities. Among the affected growth factors, the addition of fibroblast growth factor 4 (FGF4) and neutralizing antibody for follistatin (FST; an antagonist of bone morphogenetic protein (BMP)) could most efficiently restore cell proliferation, differentiation, and organization of muscle cells in the tongue of Tgfbr2fl/fl;Wnt1-Cre mice. Thus, our data indicate that CNC-derived fibroblasts regulate the fate of mesoderm-derived myoblasts through TGFβ-mediated regulation of FGF and BMP signaling during tongue development.  相似文献   
55.
In a model of experimental cutaneous leishmaniasis, pre-exposure of Leishmania major-resistant mice to 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), an aryl hydrocarbon receptor agonist, causes suppression of the protective anti-parasite T helper 1 response while paradoxically also reducing parasite burdens in those animals. In this study, we examined if TCDD exposure could also reduce parasite burdens in L. major-susceptible BALB/c mice. In the highest dose group (160 µg/Kg), TCDD treatment caused a significant reduction of parasite burdens by 10-fold after three weeks while also causing a significant lymphoid atrophy indicating suppression of the non-protective T helper 2 response. A dose-dependent delay of foot lesion progression was also observed such that lesion size in the highest dose group was less than half that of controls after 35 days of infection. Importantly, although TCDD exposure initially reduced disease severity and prolonged the course of disease by as much as three fold in some animals, this effect was transitory and TCDD did not induce resistance to L. major infection. Because TCDD exposure reduced L. major burdens in both resistant and susceptible mice, we hypothesized that TCDD reduces L. major burdens in mice by a mechanism that does not involve adaptive immunity. To test this, severe combined immunodeficient (SCID) mice were used. In mice infected with a moderate number of L. major (10,000), TCDD treatment caused a time- and dose-dependent decrease of parasite burdens by nearly 100-fold after six weeks in the highest dose group (200 µg/Kg). A significant and dose-dependent delay of foot lesion progression was also observed in these animals. These results indicate that TCDD exposure can reduce the severity of leishmanial disease in mice independent of adaptive immunity.  相似文献   
56.
The determination of O(2) consumption by using arteriovenous O(2) content differences is dependent on accurate oxyhemoglobin saturation measurements. Because swine are a common experimental species, we describe the validation of CO-oximeter for porcine-specific oxyhemoglobin saturation. After developing a nonlinear mathematical model of the porcine oxyhemoglobin saturation curve, we made 366 porcine oxyhemoglobin saturation determinations with a calibrated blood-gas analyzer and a porcine-specific CO-oximeter. There was a high degree of correlation with minimal variability (r(2) = 0.99, SE of the estimate = 5.2%) between the mathematical model and the porcine-specific CO-oximeter measurements. Bland-Altman comparison showed that the CO-oximeter measurements were biased slightly lower (-0.4 vol%), and the limits of agreement (+/-2 SD) were 0.7 and -1.5 vol%. This is in contrast to a 10-20 vol% error if human-specific methods were used. The results show excellent agreement between the nonlinear model and CO-oximeter for porcine-specific oxyhemoglobin saturation measurements. In contrast, comparison of the porcine-specific oxyhemoglobin saturations with saturations obtained by using human methods highlights the necessity of species-specific measurement methodology.  相似文献   
57.
58.
59.
60.
A wide range of phenotypic variation was observed among neopolyploids obtained from the diploid pear cultivar ‘Fertility’ by in vitro colchicine treatment. The variant plantlets had alterations in leaf characteristics. Neopolyploids had significantly different ratios of leaf length to leaf width compared to the diploid control. Shoot regeneration from leaf explants and rooting ability from in vitro shoots of neopolyploids was examined. Regeneration frequencies of shoots from leaf explants of seven of the nine neopolyploids were significantly decreased compared to the diploid control. The organogenic potential of neopolyploids was highly genotype-dependent for both shoots and roots. Tetraploid clone 4x − 4 failed to regenerate shoots from leaf explants and the pentaploid clone 5x − 2 failed to root from in vitro shoots. The results suggest that polyploidization caused the decrease in or loss of in vitro organogenic potential. Regenerated shoots derived from neopolyploids showed different phenotypes, depending on the ploidy of the donor plant.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号